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ABSTRACT 

Environmental changes are predicted to impact fish ecology; specifically, the phenology of 
spawning and larval settlement, resulting adult and larval movement, and ultimately seasonal 
habitat utilization. Hence, warm or cold environmental conditions may cause early or late seasonal 
movement among habitats. However, resource surveys are typically designed to occur at 
approximately the same time each year, and this mismatch in timing between survey sampling and 
fish movement can cause a different proportion of population biomass to be available to the survey 
in different years. In this study, we demonstrate an application to minimize such impacts using 
yellowfin sole (Limanda aspera) in the eastern Bering Sea as a case study. We employed fishery-
dependent catch-and-effort (also called catch per unit effort (CPUE)) data collected by observers 
on commercial vessels, which covered the months of March-October (whereas survey data were 
limited to June-August). We built a seasonal spatio-temporal model so that seasonal distribution 
could be used to better explain summer survey availability and movement timing as impacted by 
interannual temperature changes. Our results highlight (i) spawning movement phenology occurs 
earlier during warm years than cold years, (ii) spatial distribution is more constrained and biomass 
is lower during cold years than warm years, (iii) fish were more available to the summer survey 
during warm years than cold years, and (iv) phenology differed by sex with males staying longer 
on the spawning grounds than females. Finally, we computed an overlap index between the survey 
area and fishery CPUE data to be used as a catchability covariate within the yellowfin sole stock 
assessment. This index confirmed the changes in relative availability of this species by year as 
presently used in the assessment. 

Keywords: movement phenology, climate-driven phenology shifts, seasonal spatiotemporal 
model, fishery-dependent data, spatial availability, catchability, yellowfin sole. 
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I. INTRODUCTION 

Rapid environmental changes to fish habitat present several major challenges to fisheries 
ecology and management. In response to a changing climate, marine organisms can adapt to the 
new conditions within their current geographical range, can track their climatic niches in time 
and/or in space or can become locally extinct (García Molinos et al., 2016). This can lead to 
changes in the ecosystem structure and functioning across space and time. To track their niche in 
space and time, marine organisms have to adapt by changing the seasonal timing of many 
biological processes (termed “phenology”), including the timing of spawning and larval 
settlement, resulting adult and larval movement, and ultimately seasonal habitat utilization (Rogers 
and Dougherty, 2019). 

Accounting for such spatial and temporal aspects of climate responses can be critical to 
successfully manage fisheries. Previous studies have shown that spawning phenology, particularly 
spawning migration phenology, is sensitive to temperature in fish species conducting ontogenetic 
migration (McQueen and Marshall, 2017; Sims et al., 2004). For example, climate-induced 
changes in spawning phenology has been shown for striped bass (Morone saxatilis) (Peer and 
Miller 2014) in Chesapeake Bay, which led to higher than anticipated fishing mortality on 
spawning fish during cold years. Resource surveys for use in stock assessments are typically 
designed to occur at approximately the same time each year (NRC, 2000). However, warm or cold 
temperature conditions may cause early or late movement (Asch, 2015) into or out of the survey 
area causing differential “availability” of the resource (Staudinger et al., 2019). The ability to 
detect such climate impacts requires models that can use additional data and handle seasonal, 
interannual, and spatial processes, and these are rare (Sydeman et al., 2015; Thorson et al., 2020). 
Some movement phenology studies have focused on anadromous fish because of easier access to 
their spawning grounds and juvenile habitats in rivers (Kovach et al., 2015; Otero et al., 2014). 
For oceanic conditions, habitat and seasonal coverages are challenging. Fishery-dependent data 
can expand our “snapshot” survey data and improve understanding of essential fish habitat 
(Dambrine et al., 2021; Murray et al., 2013). The expanded seasonal and spatial coverage can then 
be useful to explore biological processes such as spawning within a large spatial domain 
(Neidetcher et al., 2014). But fishery-dependent data present some limits (Maunder et al., 2006) 
because those data might confound changes in fishing behavior with trends in abundance. 
Considering fishing behavior is then important to avoid biased estimates of biomass and distribution. 
Nevertheless, fishery-dependent have been widely used to provide inside about fishery ecosystems 
functioning (Pauly et al., 1998) and to characterize seasonal distribution and habitat use (Kneebone 
et al., 2020). Indeed, previous studies highlighted that fishery-dependent and independent data 
might provide very similar patterns in term of fish spatio-temporal distributions (Pennino et al., 
2016). With respect to spatio-temporal models, previous authors have included seasonal variation 
in isolation (Grieve et al., 2017; Thorson et al., 2016) or included both changes in spatial 
distribution among years and among seasons (Akia et al., 2021; Bourdaud et al., 2017; Kai et al., 
2017; Kanamori et al., 2019). In particular, (Thorson et al., 2020) built seasonally explicit 
spatiotemporal models that included annual and seasonal variation in spatial distribution and 
density to identify interannual changes in phenology. Those models can be useful to identify 
climate-driven shifts in the seasonal timing of fish movement and ecosystem productivity but are 
expensive in terms of parametrization, and computation time. Spatio-temporal models that account 
for seasons when fit to fishery data may suffer from unbalanced designs and a lack of parsimony. 
In this study, we resolve this problem by an alternative approach accounting for seasonality 
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119 implicitly, using spatially  varying  catchability to  represent seasonality. This allows us to explore  
migration timing and  how interannual temperature changes  impact seasonal migrations.   

 
We implemented  this approach on  yellowfin  sole (Limanda aspera)  from  the eastern Bering  

Sea (EBS). This stock represents  the largest flatfish fishery in the world  by landed weight  (Spies  
et al., 2019). Adults  exhibit a benthic lifestyle  and occupy  separate spawning a reas  (in  summer)  
and feeding  areas  (in late  summer)  on the eastern Bering Sea shelf. From over-wintering grounds  
near the shelf margins, adults begin a migration onto the inner shelf in spring  each  year for  
spawning a nd feeding  (Nichol, 1995; Wakabayashi, 1989; Wilderbuer et al., 1992)  (Fig.1). The  
directed fishery  historically occurs  from winter through autumn, and NMFS research surveys take  
place during  the  summer  months (Wilderbuer et al., 1992) . The  availability  of this stock has been  
shown to vary within  the survey  area (Nichol, 1998; Nichol et  al., 2019)  due to spawning  
migrations. Presently, the stock assessment model used for setting catch advice includes  a 
temperature coefficient  that impacts  the availability of the stock to the survey  gear (Wilderbuer et  
al., 2019) .  

As with other flatfish stocks where  males  remain on the spawning grounds longer than 
females  (Arnold and Metcalfe, 1996; Hirose and  Minami, 2007; Rijnsdorp, 1989; Solmundsson et  
al., 2003),  Nichol  et al.,  (2019) also showed that  male  yellowfin sole  remained on the spawning 
grounds longer than females and highlighted positive correlations between the proportion of  
females relative to male and annual estimated survey biomass.  However, all  those conclusions rely  
on data collected from scientific surveys  designed to occur at the same time each  year within  the  
same restrained  spatial domain, which precludes our understanding of  changes in timing of  
spawning  migration. No seasonal  or  interannual processes have been inferred to better understand  
the impact of  interannual temperature changes  on yellowfin sole movement phenology. In this  
paper, using fishery-dependent catch  per unit  effort data  (CPUE), we  propose to extend  these 
previous findings  (Nichol et al., 2019)  by inferring seasonal movement and relationships between  
movement and interannual temperature changes. Because spatially explicit  fishery CPUE  data ar e  
available throughout  multiple seasons  and years,  it can be used to build a model on a sub-seasonal  
interval to capture seasonal movement  within a wide spatial domain.  We developed a model  which  
accounts  for  seasonality implicitly and explored  how migration timing  and  interannual temperature 
changes  can impact the  spatiotemporal distribution of  CPUE  data. To  this end, we estimated  
spatially varying  catchability coefficients linking  density, seasons, and  interannual temperature 
changes. We specifically  define early  (March 19-May 21), intermediate (May 22-July 30), and late  
(August  1-September 24)  fishing  seasons  for  yellowfin sole. These seasons include 33.2%, 32.7%, 
32.6%  respectively  of the total fishery landings  from  2001 and 2019.  This  study’s period (March 
19-September 24) corresponds to high fishing effort that brackets spawning  timing and migration  
of  yellowfin sole in the  Bering Sea and  includes  the fishery-independent  survey  timing  occurring  
during the intermediate season.  

We address  four  key questions:   

[Q1]  Does  the timing  of migration  and progression of  spawning  impact the fishery CPUE  
and  is the progression of spawning dependent on temperature changes  in the  EBS?  

During warm  years,  we expect migrations  to start earlier, with high CPUE in the middle shelf  
during the  early season, and then again in the middle and outer shelf during the late  season when 
back migration is more progressed (Fig.  2, second row). Inversely, during c old years, we expect  
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migration to be delayed with high CPUE in the inner shelf and in the middle shelf during the 
intermediate and late season respectively, when back migration to wintering areas is delayed (Fig. 
2, second row). 

[Q2] Does fish availability to survey change between warm and cold years? 

During warm years, because migrations are more progressed, we expect substantial overlap 
between survey area and fisheries CPUE during the intermediate season (i.e. during the survey 
timing). By contrast during cold years, fish are expected to be in shallower water during the 
intermediate season and not available to the survey, so we expect lower overlap between survey 
area and fisheries CPUE during the intermediate season, while we expect a strong overlap during 
the late season when fish starts leaving spawning grounds to wintering areas (Fig. 2). 

[Q3] Does phenology, that is the timing of spawning migration, change with sex? 

We expect male yellowfin sole remain on the spawning grounds longer than females, because 
females appear to migrate out of the spawning areas earlier than males, based on analyses from 
survey data (Nichol et al., 2019). 

[Q4] Can we use fishery CPUE to account for change in availability to the survey to improve 
the yellowfin stock assessment? 

The yellowfin stock assessment (Spies et al., 2019) includes the survey mean bottom temperature 
and survey timing across stations as covariates affecting survey catchability. We evaluate how an 
“overlap index” computed from seasonal fishery CPUE (derived from [Q2]) might improve the 
assessment of yellowfin sole in the eastern Bering Sea. 

II. MATERIALS AND METHODS 

In this section, we will first present the spatiotemporal models in a general way so that it can be 
applied to other cases of study, then the data specific to our case study, and then the specific 
methodologies to address the questions posed above. 

II.1. Spatio-temporal model accounting implicitly for seasonal variations 

We developed spatiotemporal models which estimate the expected fisheries CPUE 𝑏𝑏(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖) (in 
biomass per tow duration) for each sample 𝑖𝑖, occurring at location 𝑠𝑠𝑖𝑖 and year 𝑡𝑡𝑖𝑖. 

To define the spatial resolution of the model, we adopted the SPDE (Stochastic Partial Differential 
Equation) spatial framework which represents continuous Gaussian fields as a discrete Gaussian 
Markov random field (Lindgren, 2012). The number of knots determines the spatial resolution of 
the model (and is specified by the user as a trade-off between the accuracy of the Gaussian Markov 
random fields representation and computational cost). We used a k-means algorithm to identify 
the location of knots to minimize the total distance between the location of knots and extrapolation-
grid cells (Fig. S1). The SPDE approximation involves generating a triangulated mesh that has a 
vertex of a triangle at each knot (here we used the package R-INLA (Lindgren, 2012)). Then spatial 
variables at location 𝑠𝑠, are interpolated from knots to extrapolation grid using this triangulated 
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203 mesh  (Fig. S1)  (Grüss et al., 2020). Concerning the temporal resolution of the model, year  𝑡𝑡𝑖𝑖  is 
defined as an integer {2001, 2002, …, 2019}. We calculate 𝑏𝑏(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)  using a Generalized  Linear  
Mixed Model (GLMM)  while including random  effects to describe additional variability from  
covariates  not included in  the process  error terms  (spatial and spatiotemporal variations, more  
details below in equation (1)). We specifically define a linear predictor  that is then transformed  
via an inverse-link function. In the following  we used  a log-link function, so that all effects are  
additive  in their impact on predicted fisheries  log-CPUE,  which also  simplifies interpretation of  
covariate effects.  
The model is a  log-linked linear  predictor  as follows:  

 
 𝑙𝑙𝑙𝑙𝑙𝑙 [𝑏𝑏(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)] = 𝛽𝛽(𝑡𝑡𝑖𝑖)  + ∑𝑛𝑛 𝑘𝑘 

𝑘𝑘=1( �𝜆𝜆(𝑘𝑘) + 𝜑𝜑(𝑠𝑠𝑖𝑖, 𝑘𝑘)� 𝑞𝑞(𝑖𝑖, 𝑘𝑘)) + 𝜔𝜔(𝑠𝑠𝑖𝑖) + 𝜀𝜀(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)  , (1)  
 
where 𝛽𝛽(𝑡𝑡𝑖𝑖)  is the intercept for  year  𝑡𝑡𝑖𝑖,  𝜔𝜔(𝑠𝑠𝑖𝑖)  and 𝜀𝜀(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)  represent, respectively, spatial, and  
spatiotemporal variation  in  fishery CPUE; and  𝑞𝑞(𝑖𝑖, 𝑘𝑘)  is an element of matrix  𝑞𝑞  composed of  𝑛𝑛𝑘𝑘  
measured catchability  covariates that explain variation in catchability,  𝜆𝜆(𝑘𝑘)  is the estimated impact  
of catchability  covariates  for this linear predictor,  𝜑𝜑(𝑠𝑠𝑖𝑖, 𝑘𝑘)  is zero-centered spatial variation in that 
slope term.  The model  was designed to predict fishery CPUE  as  a function of temporal variation,  
spatial variation, and spatiotemporal variation effects, as well as catchability covariates.  It  accounts  
for these spatio-temporal dynamics  as follows:  

1.  Spatial variation: the spatial variation terms, ω(s), in Equation (1) represent  unmeasured 
spatial variation in the linear predictor that is stable over time;  

2.  Spatio-temporal variation:  the spatiotemporal variation terms ε(s,t), represent unmeasured 
spatial variations in the linear predictors that changes  between years;  

3.  Temperature-mediated  drivers represented  as catchability:  𝜑𝜑(𝑠𝑠, 𝑘𝑘) in Equation (1)  
encompasses  the spatially  varying effect of  covariates on fisheries CPUE.  A part of the 
spatial variation is then  attributed to  catchability  covariates. For  each  catchability  
covariate (indexed by k)  tested, we implemented corner constraints only for the  linear  
effect  𝜆𝜆(𝑘𝑘),  and not for  the spatially varying effect  𝜑𝜑(𝑠𝑠𝑖𝑖, 𝑘𝑘). 
 

These spatial  and spatio-temporal terms can  be modelled  as random effects following  a 
multivariate normal distribution (Gaussian random fields):  
 

𝛚𝛚~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎, 𝜎𝜎2𝜔𝜔𝐑𝐑ω)  
𝛆𝛆(𝑡𝑡)~𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝜎𝜎2𝜀𝜀 𝐑𝐑 )   ε
𝛗𝛗 ~ 𝜎𝜎2 (2)       (𝑘𝑘) 𝑀𝑀𝑀𝑀𝑀𝑀�0, 𝜑𝜑𝐑𝐑ε�  

 
where 𝜎𝜎2 

𝜔𝜔 is  the  estimated pointwise variances of the spatial variation in CPUE; 𝜎𝜎2 
𝜀𝜀  is  the estimated  

pointwise variances  of the spatio-temporal variation  in CPUE;  𝜎𝜎2 
𝜑𝜑 is the estimated pointwise  

variances of the spatial  effect for each  covariate k;  𝐑𝐑(𝑠𝑠1, 𝑠𝑠2)  is  the correlation between location 𝑠𝑠1  
and location 𝑠𝑠2  for spatial  and spatiotemporal terms  and is  approximated as following a Matern  
function:  

1
 𝐑𝐑(s1, s2) = × ( |−1 𝜅𝜅 (𝑠𝑠1  ν  − 𝑠𝑠2)𝐇𝐇|)ν × 𝐾𝐾𝜈𝜈(𝜅𝜅|(𝑠𝑠1 − 𝑠𝑠2)𝐇𝐇|)  (3)  

2 Γ(𝜈𝜈) 
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where  𝐇𝐇  is a two-dimensional linear transformation representing  geometric anisotropy,  𝜈𝜈  is the  
Matern smoothness (fixed at 1.0), and κ governs the decorrelation distance.  

Finally, in this study, we analyzed  fisheries dependent data,  in particular  those CPUE data that did  
not include zeros, and  we assumed CPUE by location to be lognormally  distributed. Code for  
model M3 is available online on Github (https://github.com/MaxOlmos/Flat_fish_2021). 

II. 2. Data  

Fishery-dependent catch-and-effort (CPUE)  

We used catch  (biomass in kg)  and effort (tow duration)  data collected by observers  on Bering 
Sea-Aleutian Islands commercial bottom trawl  vessels from 2001 to 2019 between March 19-
September 24. For  each commercial catch, observers record geographical position (longitude and 
latitude) and total catch of  yellowfin sole, extrapolated from a sample.  Sample locations  are 
defined as  the centroid of one of 105 polygons  defined by  the Alaska Department of  Fish and  
Game (called ADFG  cells, one degree of longitude by  half degree latitude), where these cells  
encompass the spatial domain of  yellowfin sole fishery in the  eastern Bering Sea (Suppl. Mat. Fig.  
S2, S3). We aggregated all observed sets within a  given year, season (early/intermediate/late), and 
ADFG  spatial cell to a single observation. We aggregated from observed sets to unique  year-cell-
season combinations in two ways:  

1.  Average ratio: We present  results based on this method by  calculating the ratio  of catch  and  
effort for each observed set, and then averaged across these. This “average ratio” has also  
been done in model-based analyses  and allows  to correct for effects of changes in the 
distribution of fishing fleets and activity  (Walters, 2003; Walters and Hilborn, 2005)  

2.  Ratio estimator: As  a sensitivity analysis, we separately summed the catch  and effort for all  
observed sets, and then taking the  ratio of these sums (Swain and Wade, 2003). This is 
conceptually similar to “ratio estimators”  (Myers  and Worm, 2003);  

In practice, we  found that results were not  highly sensitive to the choice of aggregation method  
(Suppl. Mat. Fig.  S5, S6) so the spatio-temporal model was fit to these aggregated data (using the  
average ratio  method). Also, this  aggregating process is designed to mitigate the potential bias  
arising from preferential sampling  (Alglave  et al., 2022; Conn et al., 2017), by ensuring  that areas  
with a disproportionately  higher  CPUE  of observed sets are still aggregated to a single fitted  
observation. As  a preliminary  check and as  suggested by Alglave et  al. (2022), we explored the  
relationship between sampling intensity and biomass to diagnose any potential strong preferential  
sampling. Our results suggested  that preferential sampling is  low (Suppl. Mat. Fig. S4), so we did 
not account for  any preferential sampling in our model.  

Catchability covariates  

We  sought  to understand how the spatiotemporal distribution of CPUE changed depending on 
warm or cold temperature  years.  Thorson, (2019a)  has  assessed  the impact of  temperature and cold  
pool on yellowfin sole. But this study  relied on survey data  that are only  defined for the  
intermediate season. Unfortunately, no temperature associated with  fishery CPUE samples are 
available.  So, based on  Nichol  et al. (2019)  and the time variation in cold pool extent  (Suppl. Mat.  
Fig.  S7, akgfmaps  package (https://github.com/afsc-gap-products)  we approximated  interannual  
temperature changes in the Bering Sea using  temperature  as a  discrete variable with two levels: 
nine  cold years (2006-2013, 2017)  and ten  warm years (2001-2005, 2014-2016, 2018, and 2019).  
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282 We encourage future work using  other covariates to approximate interannual temperature changes  
in the Bering Sea such as  temperature (continuous  variable, yearly or seasonally defined) and cold  
pool extent.  

The season  covariate is  discrete  with three levels  which were  based  on the migration ecology of  
yellowfin sole  (Nichol, 1998; Spies et al., 2019;  Wilderbuer et al., 1992): early  (March 19-May 
21), intermediate (May  22-July 30), and late seasons (August 1-September 24), where these 
seasons include 33.2% , 32.7% and 32.6%,  respectively  of the total  fishery landings between 2001  
and 2019, and the survey  occurs during the intermediate season  (between 2001  and 2019, more  
than 99.9% of the survey tows occurs during the intermediate season).  

To  implicitly estimate changes in movement phenology depending on temperature changesin the  
EBS we considered  the combined effect of  interannual temperature changes  and season  on fishery  
CPUE  data.   

Different models for the  spatiotemporal variation of  fishery CPUE  were  tested (Table  1). In the  
reference model M3, we  inferred  whether the timing of migration (i.e., season) changes  with  
different environmental conditions  (i.e., for years with warm or cold  years). Three models of lower  
complexity were  also considered (M0, M1, M2, Table 1) to test if  accounting implicitly for  
seasonal movement  (i.e., season and temperature effects)  better explains  the spatiotemporal  
variations in fishery CPUE data. We used Akaike’s  Information Criterion (AIC) for model  
selection  as  a measure of  model parsimony to identify the level of complexity that likely minimizes  
the combination of bias (Akaike, 1974).  

Male and female data  

Fisheries CPUE were apportioned into male and  female categories using female proportion data  
from observer data. For some locations, female proportions do not exist  (17% of the locations). In  
this case we attributed to this location the value of the closest  neighbor for a given year  and a given 
combination of covariates (i.e., all combinations of levels  constituting  the  seasons  covariates)  
(Suppl. Mat.  Fig.S8).  
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309 II.3. Estimation and model fitting  

Parameters are estimated using release 3.8.2 of the Vector Autoregressive Spatio-Temporal  
(VAST) package  (Thorson, 2019), which is publicly available online (https://github.com/James-
Thorson/VAST) and runs within the R statistical environment (R Core Team, 2017). Spatial terms  
were  estimated using  the SPDE approximation (Lindgren et  al. 2011), such that we  estimate the  
value of each spatial variable at a set of knots.  

The marginal log  likelihood was computed using the  Laplace  approximation implemented by  the  
R package ‘TMB’  (Kristensen et al., 2016)  through an approximation of  the integral across all  
random effects. Finally, VAST employs the  generalized delta method implemented in TMB to  
calculate the standard  errors of  all the fixed and random effects,  as well as the standard errors of  
the derived  quantities (Kass & Steffey  1989).  In  some cases, we also calculated standard errors  
(SEs)  for entire vectors  of output (e.g.,  𝑠𝑠𝑠𝑠�𝜑𝜑(𝑠𝑠, 𝑘𝑘)�  for the spatially varying term 𝝋𝝋).  In these  
cases, we extracted  the joint precision matrix (e.g., matrix of 2nd derivatives) of fixed and random  
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322 effects evaluated at their  maximum  likelihood estimates and conditional upon the data.  We then  
generated 250 samples  from this joint precision matrix, recompute all quantities for each sample,  
and then calculate  the standard error as the standard deviation of these samples.  This 
approximation had  lower accuracy than the generalized delta method but  is computationally  
efficient when calculating standard errors for quantities calculated as a nonstandard function of  
parameters.   
 
II.4. Model validation and evaluation  
 
We assessed model convergence by  checking that the gradient of the marginal log-likelihood is  
less than 0.0001 for all fixed effects, and that the Hessian matrix of second derivatives of the  
negative log-likelihood is positive definite. W e checked model residuals  and validated the model  
using the DHARMA framework (Hartig, 2022)  within VAST by  computing QQ-plot residuals  
(Suppl. Mat.  Fig.  S10), plotting how residuals vary with magnitude of the predictions (Suppl. Mat.  
Fig.  S10), and spatial map of quantile residuals (Suppl. Mat.  Fig.  S11). None of  our diagnostics  
highlight  any strong patterns in residuals  and does  not indicate any  strong inconsistencies between 
the models and the data.  
Model M3, which accounts for  changes in movement phenology in response to interannual  
temperature changes  has the lowest AIC value so  appears to be the best  descriptor to represent  
spatiotemporal variations in CPUE  and was therefore retained in the subsequent analyses (Table  
1).  

 
II.5. Derived quantities  and model specifications  

Here we describe  the methodology used to find evidence in support of each of our fundamental  
questions, using results from fitting the model (Eq. 1, model M3) to the data, as described above.  

[Q1]  Does the timing of migration and progression of spawning impact the fishery CPUE  
and is the progression of spawning dependent on interannual temperature changes  in the  
EBS?  

We compared spatial distribution of  fishery CPUE between cold and warm  years. We  first  
calculated  the average predicted biomass  CPUE  for each season (u) in warm vs. cold years  𝑣𝑣(𝑡𝑡):  

 𝑏𝑏(𝑠𝑠, 𝑡𝑡, 𝑢𝑢) ≡ 𝑏𝑏(𝑠𝑠, 𝑡𝑡) × 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢 𝑣𝑣(𝑡𝑡)� (4)  
,  

 

∑𝑛𝑛𝑡𝑡 ∗
 𝑏𝑏(𝑠𝑠, 𝑢𝑢, 𝑣𝑣∗) = 𝑡𝑡=1 𝐼𝐼(𝑣𝑣(𝑡𝑡) = 𝑣𝑣 )𝑏𝑏(𝑠𝑠, 𝑡𝑡, 𝑢𝑢) 

 (5)  
∑ 𝑛𝑛𝑡𝑡 𝐼𝐼 𝑣𝑣(𝑡𝑡) = 𝑣𝑣∗𝑡𝑡=1 ( )

   

where  𝑘𝑘𝑢𝑢,𝑣𝑣  is the covariate associated with season  𝑢𝑢  and  temperature 𝑣𝑣, 𝑣𝑣(𝑡𝑡)  is the  temperature  for  
each year  𝑡𝑡, and 𝐼𝐼(𝑣𝑣(𝑡𝑡) = 𝑣𝑣∗)  is an indicator function that equals  1  when year  𝑡𝑡  is associated with  
temperature  𝑣𝑣∗  and 0  otherwise. So,  𝑏𝑏(𝑠𝑠, 𝑡𝑡, 𝑢𝑢)  is the predicted fishery CPUE for  each knot location 
s, in year  𝑡𝑡  within  season u,  and 𝑏𝑏(𝑠𝑠, 𝑢𝑢, 𝑣𝑣∗)  is the average fishery CPUE  in season 𝑢𝑢  for all years  
with  temperature  𝑣𝑣.  Then, for a given  season and a given  temperature, we generated  and compared  
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358 cumulative maps of biomass (kg.min-1)  by identifying the  areas that encompassed the top  95th 
percentile of  total biomass across the modeled spatial domain.  

Additionally, we assessed the significance of the spatial effect  𝜑𝜑𝑢𝑢,𝑣𝑣,𝑠𝑠  for each  location  s, season  u,  
and temperature  v, by  computing a two-sided Wald test of significance. We computed the p-value  

2 

assuming that  the ratio  𝜑𝜑�𝑠𝑠,𝑘𝑘𝑢𝑢,𝑣𝑣�
2   follows  a Chi-squared distribution with one degree  of freedom  

𝑠𝑠𝑠𝑠�𝜑𝜑�𝑠𝑠,𝑘𝑘𝑢𝑢,𝑣𝑣�� 

(Wald Chi-Squared test). We consider the effect significant if p-value <0.05.  

[Q2] Does fish availability to survey change between warm and cold years? 

We investigated  how  the spatial distribution  of fisheries CPUE  overlap with the survey  area  
depending on seasons and temperature. We computed an overlap index  𝑂𝑂𝐼𝐼(𝑡𝑡, 𝑢𝑢)  for each  year t,  
each season  u  and each temperature  v(t). This overlap index  𝑂𝑂𝐼𝐼(𝑡𝑡, 𝑢𝑢) is defined by  calculating the  
predicted fisheries  biomass  for all locations in the survey area  (𝑠𝑠 ∈ 𝐴𝐴𝑇𝑇𝑇𝑇𝑡𝑡 ), and the  predicted  
biomass in the  entire fished area (𝑠𝑠 ∈ 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 ), and then calculating their  ratio:  

∑  𝑢𝑢) 𝑠𝑠 𝜖𝜖𝐴𝐴𝑂𝑂𝐼𝐼(𝑡𝑡, =  𝑇𝑇𝑇𝑇𝑇𝑇 
𝑏𝑏(𝑠𝑠, 𝑡𝑡) × 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢,𝑣𝑣(𝑡𝑡)�   ∑𝑠𝑠  𝜖𝜖𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 
𝑏𝑏(𝑠𝑠, 𝑡𝑡) × 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢,𝑣𝑣(𝑡𝑡)� (6)  
 

 

Because the predicted biomass  𝑏𝑏(𝑠𝑠, 𝑡𝑡, 𝑢𝑢)  accounts  for interannual variation  via parameter  𝛽𝛽(𝑡𝑡)  (see 
Eq. 1)  we also derived  an overlap index  from the expected spatial main effect  (i.e. defined  as the  
product between 𝜔𝜔(𝑠𝑠) and 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢,𝑣𝑣�), as a sensitivity  analysis (Suppl. Mat.  Fig.S9):   

 

∑
𝑂𝑂𝐼𝐼 (𝑢𝑢, ) = 𝑠𝑠 𝜖𝜖𝐴𝐴𝑣𝑣   𝑇𝑇𝑇𝑇𝑇𝑇 

𝜔𝜔(𝑠𝑠) × 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢,𝑣𝑣� 
𝜔𝜔   ∑𝑠𝑠  𝜖𝜖𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 

𝜔𝜔(𝑠𝑠) × 𝜑𝜑�𝑠𝑠, 𝑘𝑘𝑢𝑢,𝑣𝑣� (7)  
 

This sensitivity shows that the overlap index is not sensitive to the choice of Eqs. 6 or 7, so in the  
following analysis we calculated it from 𝑏𝑏(𝑠𝑠, 𝑡𝑡) (Eq. 6). 

[Q3] Does phenology, i.e the timing of spawning migration, change with sex? 

We used the modelling framework defined in section II.1 (M3) to run two independent  
spatiotemporal models, one for males  and one for females. We  extracted  the  predicted  average  
fishery CPUE, 𝑏𝑏(𝑠𝑠, 𝑢𝑢, 𝑣𝑣), in season 𝑢𝑢  for all years with  temperature  𝑣𝑣(𝑡𝑡), for both males  and  
females, to investigate if  movement phenology  changes between males and females depending on  
temperature. We also extracted  𝑂𝑂𝐼𝐼(𝑡𝑡, 𝑢𝑢)  for both males  and females  to investigate if availability to  
the survey changes  with sex.  

[Q4]  Can we use CPUE (results from  [Q1], [Q2]  and [Q3])  to account for change in  
availability to the survey to improve the yellowfin stock assessment.  

We evaluated the overlap index relative to current covariates used  to model  survey “availability”  
in the operational stock assessment used for management  (Nichol et al., 2019). The yellowfin stock 
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388 assessment  (Spies et al., 2019)  includes the survey  mean bottom temperature   and survey timing  
across stations as  covariates  on survey catchability, q:  

 𝑞𝑞 = 𝑠𝑠−𝛼𝛼+  𝛽𝛽1𝑇𝑇+  𝛽𝛽2𝐸𝐸+  𝛽𝛽3𝑇𝑇𝐸𝐸  (8)  

where  T  is  survey mean bottom temperature,  S  is  survey timing, and TS  is the  interaction of  T  and 
S.  The parameter  α  is the  estimated intercept and  𝛽𝛽1, 𝛽𝛽2𝑎𝑎𝑛𝑛𝑎𝑎  𝛽𝛽3  are the estimated coefficients of the 
effect of temperature, survey timing and the interaction of temperature and survey timing on 
catchability,  respectively.  

Presently, the assessment model code requires a covariate for every survey  year. The 2021 base  
accepted model was modified such that the current covariate anomaly values from 1982-2019, and 
2021 were set to zero (no anomaly) except for the same  years from the overlap index: 2001-2019. 
Each covariate was  normalized  for the period where the overlap index is available. Three stock  
assessment  model  (SAM)  configurations  were deemed reasonable to show for the evaluation:   

SAM.1:  Temperature, survey timing, and their interaction as  covariates on  catchability  (Eq.  8).  

SAM.2:  Overlap index  during the survey season,  𝑂𝑂𝐼𝐼(𝑡𝑡, 𝑢𝑢 = 𝐼𝐼𝑛𝑛𝑡𝑡. ),  as a covariate on catchability  
(Eq.  6).  

We ran MCMC sampling from the posterior  distribution us ing the ADNUTS R package  
(Monnahan et  al., 2019; Monnahan and Kristensen, 2018).  
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III.  RESULTS  

[Q1]  Does the timing of migration and progression of spawning impact the fishery CPUE  
and is the progression of spawning dependent on temperature  in the EBS?  

The model  can  predict the spatial distribution of fisheries  CPUE  for each  year  and each season  
(Fig.  3, Suppl.  Mat.  Fig.S12).  Our results  highlight  that CPUE  is  affected by the season and  
progression of spawning m igration. The model  estimates  a strong  effect of  seasons  on the spatial 
distribution of  yellowfin sole CPUE (Fig.3,  4,  5).  During the early season, CPUE are mostly  
distributed across  all  EBS,  whereas during the  Intermediate season, CPUE are distributed in the  
Inner Shelf, close to the  spawning a reas  (Fig. 3). Finally,  during the late season, CPUE are more 
distributed across the inner and middle  shelf  where  yellowfin soles  have started their migration  
back  to the wintering areas in the outer shelf.   

 

Additionally, our results highlight  that the seasonal  distribution of CPUE  is  dependent on  
temperature. The spatiotemporal model  estimates  the effect of  seasonality and temperature  on 
fisheries CPUE  (Fig.  4, see  Suppl.  Mat.  Fig.  S13  for the significant effects). During the  early  
season, cold temperature conditions show elevated CPUE in a broad band of  the outer and southern 
middle domain while  warm years  show elevated CPUE in a small hotspot in the outer domain. 
During the intermediate and late seasons, cold temperature conditions are associated with elevated  
CPUE  in the shallowest waters of the inner shelf  (intermediate) or the middle domain (late), while  
warm  temperature conditions show less association with inner-domain CPUE  (Fig.  4).  

 

406 
407 

408 
409 

411 
412 
413 
414 

416 

417 
418 
419 

421 
422 
423 
424 

11 



 

 
 
 
 

 
 
 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

430

435

440

445

450

455

460

465

426 Seasonal distribution of  CPUE  is then different  during  warm and  cold years  (Fig.  5). The most  
significant differences  appear during the intermediate seasons, where  yellowfin soles  are  
concentrated in the shallowest  water  in the inner shelf  close to the spawning areas during cold  
years, while they  are less constrained and distributed in the middle shelf during warm  years.   

Collectively, our results  show  that spawning movement phenology  is more progressed during 
warm  years than cold years. Specifically,  biomass  hotspots are confined to shallow waters during 
the Intermediate season (and to a lesser degree the  Late season) during cold compared with warm  
years (Fig. 5, s ee middle  and right panels).   

 

[Q2]  Does fish availability to survey change between warm and cold years?  

Our results  highlight  that movement  phenology  in relation to interannual temperature changesin  
the EBS  affects availability of these species to the survey. During the intermediate season  (which  
corresponds to the survey season), the spatial distribution of fisheries  CPUE is significantly  
different between cold  and warm  years  (Fig. 5). During cold years, CPUE are in the shallowest  
water of the inner shelf  close the spawning areas, mostly outside of the survey  area,  whereas during 
the warm  years, CPUE are found in both middle and inner shelf  within the  survey area.  

Our result  also  suggest  that yellowfin sole  are more available to  the survey during warm  years  than 
in cold  years (Fig.  6).  Interannual temperature changes  in the EBS impact  the  overlap between 
fisheries CPUE and  the  survey  grid, the strongest  difference between  warm and cold  years  
occurring during the Intermediate season (i.e., the survey season). During the survey season, warm  
years are  associated with high overlap values  (~0.73  on  average)  whereas cold  years are associated  
with lower overlap  (~0.68  in average).  Finally, during late season, Fig. 6 also shows  that overlap 
is stronger during cold years suggesting that  yellowfin sole has migrated  back to the middle/outer  
shelf from the inner shelf.  

 [Q3]  Does phenology, that is  the timing of spawning migration, change with sex?  

In terms  of total biomass,  female biomass is  larger  than male biomass  across the time-series  (except  
in 2013, Suppl. Mat  Fig.  S14). Both males and females present a seasonal pattern in their  spawning 
migration. (Fig.  7).  Our  results also highlight some differences. During the intermediate season, 
males are  concentrated in the spawning gr ounds,  so  very  few males are available to the survey,  
whereas females  are more distributed across the inner and middle shelf, so more available to the  
survey than males  (Fig.  7).  Overlap with the survey  area is more important for females  than males  
for all seasons (Fig.  8),  males  staying  longer in the inner shelf that females  (Fig.  7, 2nd  row, 
columns  2 and 3).  
 
Both males and females  movement phenology  is  impacted by  temperature  (Fig.  7). In particular, 
during the intermediate  seasons, fish were  more  aggregated in the inner shelf during cold years  
than warm  years. A lso, temperature  impacted  the overlap index  for both males  and females  but  
with  approximately  the same magnitude. Indeed, both males  and females  present a higher  
overlap index during warm than cold years, but the difference between male and female overlap 
index does not change  with warm or cold years  (Fig.  8). S tandard deviations are higher in cold 
years due to temporal variability in temperatures and cold pool extend; with some  years being  
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colder than other (i.e 2012, 2013 are colder than 2011, 2017, Figure S7), which could generate 
greater variability in terms of overlap within cold years (Fig. 5 and Fig. 7). 

[Q4] Can we use fishery CPUE to account for change in availability to the survey to improve 
the yellowfin stock assessment? 

We evaluated the overlap index relative to currently used covariates (mean bottom temperature, 
survey timing, and their interaction). For model SAM.1, both main coefficients were greater than 
zero indicating that when the temperatures were warmer and the survey start date later, the relative 
abundance as indexed by the standard survey area covered a greater fraction of the resource (Fig. 
9a). This also demonstrates that the coefficient of the interaction term (of temperature and timing) 
was negative; this would reduce the value for catchability in years where waters were warm, and 
migration was later than normal. When we applied the overlap index alone as a covariate (SAM.2), 
the coefficient was also significantly greater than zero which is consistent with the notion that the 
YFS resource distribution overlaps with the survey area (Fig. 9b). 

IV. DISCUSSION 

In this study, we inferred movement phenology and relationships between movement and 
interannual temperature changesusing spatially explicit, year-round fishery dependent CPUE data. 
We fit a novel spatiotemporal model that included a sub-seasonal component to these data, which 
allowed for us to infer seasonal movement patterns. Applying this model to yellowfin sole in the 
Bering Sea as an example, our results highlight evidence for shifts in movement phenology based 
on seasonal temperature conditions, where spawning migration occurred earlier in warm 
conditions. We also demonstrated these climate-related shifts in movement phenology can have 
notable impacts on interpretation of other data sources used in stock assessment modeling (e.g., 
survey data) and specification of catch limits. For yellowfin sole, this was demonstrated by 
computing an index of overlap at the time of the summer survey and using this index as a 
catchability covariate to improve the assessment. The use of a sub-seasonal spatio-temporal 
modeling approach fit to year-round, spatially-explicit fishery dependent data could be used to 
explore other aspects of climate-related phenology that may be occurring for many species 
worldwide. 

Consequences of climate-driven shifts in phenology on harvested populations 

As climate change has been impacting all ecosystems on the globe (Hoegh-Guldberg and Bruno, 
2010; Parmesan and Yohe, 2003; Poloczanska et al., 2013) climate-driven shifts in phenology are 
an essential concern in fisheries ecology. There is a need to account for environmental changes 
that impact the phenology of migration to provide effective management measures. First as 
highlighted in this study, shifts in phenology impact the fishery independent survey, designed to 
occur at approximately the same time each year and to provide annual indices of abundance for 
stock assessments. So, any climate-driven mismatch in timing between the survey and seasonal 
movement dynamics can cause a different proportion of population biomass to be available to the 
survey in different years. Long-term warming of the Bering Sea is likely to cause directional shifts 
in seasonal movement, in turn causing long-term changes in availability to surveys. Based on our 
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results, we urge stock assessment scientists to investigate if drastic changes in stock abundance 
represent sustained population conditions, or instead signal changes in timing of ecological events, 
such as spawning migration. 

Secondly, ignoring climate-driven changes in phenology when managing fisheries might lead to 
potential overharvesting or missed harvesting opportunities. Such changes in phenology might 
strongly impact the reproductive success of some stocks. A shift in spawning migration induced 
by changes in temperature conditions can lead fisheries to catch adults before they could spawn 
leading to unanticipated changes in fishing mortality (Peer and Miller, 2014). For anadromous 
fish, accounting for phenology shifts is critical because fisheries management for those species 
rely on expected time of fish arrival in harvested areas (Mundy and Evenson, 2011). However, 
warm conditions lead to early migration which might be mistaken as large abundance and could, 
in turn, lead to overharvesting. Climate-driven shifts in phenology are leading to incorporation of 
temperature conditions in defining closed areas and fishing seasons. Zacher et al. (2018) 
highlighted how important it is to account for the differences in red king crab (Paralithodes 
camtschaticus) distribution with temperature regime to evaluate the effectiveness of a closed area 
to protect crab from bycatch in trawl fisheries. Crabs were aggregated within closed areas during 
warm years and outside closed areas during cold years, and therefore more susceptible as bycatch 
during cold years (Zacher et al., 2018). For Pacific halibut (Hippoglossus stenolepis), mortality 
applied during spawning and feeding migrations might impact biomass distribution. Changing 
environmental conditions is altering the timing of those migrations and current fishing season 
might be too short to protect those periods. As a consequence, allowing harvesting by seasonal 
interception fisheries too early might impact the spawning success and the stock productivity 
(Loher, 2011). 

Mechanisms underlying changes in spawning movement phenology, spatial constraints and 
biomass 

By further examining the mechanisms underlying the yellowfin sole example, we argue that our 
study provides insight into other species whose spatial distribution phenology may be affected by 
climate. Our study highlights how interannual temperature changes impact the timing of spawning 
movement but also the location and biomass of fish. During warm years the yellowfin spawning 
migration occurs earlier with a less constrained distribution (Fig. 5) and high biomass (Fig. S14). 
Whereas during cold years, yellowfin movement occurs later, the spatial distribution is more 
constrained in the inner shelf, and total biomass is lower than during warmer years. Those results 
seem to be in accordance with previous studies (Bartolino et al., 2011; Nichol et al., 2019; Porter, 
2022). Both density dependent and independent mechanisms can affect the biomass and 
distribution of bottom-fish (Spencer, 2008) and explain such patterns. Considering density-
independent mechanisms, the difference in spatial extent of the spawning area related to 
temperature could be the result of yellowfin sole adults tracking the temperature of their preferred 
habitat (between 1 and 7 °C, Bartolino et al. (2011); Porter (2022)). So, when bottom temperatures 
are warm, the spawning area might extend to the western part of the inner shelf following favorable 
temperatures that extend to the middle shelf as the cold pool contracts. Whereas cold years may 
constrain yellowfin in shallow waters in the inner shelf (Nichol et al., 2019; Porter, 2022). 

Our results also match patterns resulting from density-dependent mechanisms. According to the 
theory of density-dependent habitat selection, expansion of area occupied is expected to be the 
result of an increase in population size which reduces habitat suitability and increases competition 
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(Spencer, 2008). Our results suggest that the presence of density-dependent mechanisms seem to 
be dependent on temperature conditions, and occur mostly during warm years. When bottom 
temperatures are favorable (warm years), our results show an increase in density linked with an 
increase in area occupied during the intermediate season, resulting from an expansion to suitable 
habitats. Such mechanisms linking increase in density and spatial expansion are quite common for 
marine species and have been observed in many systems (Scotian Shelf juvenile haddock 
(Marshall and Frank, 1995), Atlantic cod in the southern Gulf of St. Lawrence (Swain and Wade, 
1993), and walleye pollock (Bacheler et al., 2009)). Future studies could integrate density-
dependent responses with the same modelling framework used here (Thorson, 2022). 

In addition to density independent mechanisms, a decrease in total biomass and a more constrain 
distribution in the inner shelf during cold years can be explained by density-dependent 
mechanisms. Indeed, between warm and cold years prey availability for yellowfin sole can change 
in the EBS. During cold years, the cold pool extends over the middle shelf during the summer 
season, and thus acts as a physiological barrier. Yeung et al. (2013) showed that this thermal barrier 
displaces three flatfish species, flatfish yellowfin sole (Limanda aspera), Alaska plaice 
(Pleuronectes quadrituberculatus) and northern rock sole (Lepidopsetta polyxystra) in the inner 
shelf, intensifying competition for prey resources between those species during cold years. 

Another potential mechanism to consider is the effect of local depletion on abundance. During 
warm years the fishing fleet is more diffuse (less sea ice and a greater portion of the shelf open for 
trawling), and there is less of an effect of local depletion. However, in cold years, when yellowfin 
are more aggregated, the fishing effort and fish vulnerability increase and then local scale 
harvesting might have a negative effect on local fish density (Bartolino et al., 2012). 

Our results also highlight differences between males and females which are in accordance with 
previous studies (Bartolino et al., 2011; Nichol et al., 2019). First, female distribution is more 
expanded than male distribution and goes through the middle shelf. Then female biomass density 
is higher than male density. Such results are in accordance with the fact that for many flatfish 
species females grow to a larger size than males (van der Veer et al., 2001). So density-dependent 
habitat expansion for females might be more important because of their higher energetic 
requirements (Bartolino et al., 2011). In our study males also seem to stay longer in the spawning 
area (especially during the warm years) than females (Nichol et al., 2019) a phenomenon largely 
observed for flatfish (Rijnsdorp, 1989; Solmundsson et al., 2003) which results in higher overlap 
between the survey area and fisheries CPUE for females. This can be taken into account in the 
stock assessment by modeling sex-specific availability. 

A step forward to combine fishery and survey CPUE within a seasonal time step 

In this study, we developed a spatiotemporal model on a sub-seasonal interval to capture seasonal 
movement based on fishery CPUE data. CPUE fishery data are of great interest to understand key 
demographic processes and their relationship with environmental changes, and to characterize 
essential habitats (Dambrine et al., 2021), which survey data cannot do (Suppl. Mat. S15). Fishery 
CPUE is typically available over a large spatial domain and seasonal range, which allowed us to 
detect phenology and time-varying availability. Fishery CPUE data were important to infer 
spatiotemporal changes in spawning migration dynamics occurring outside the survey period. 
These data can also be extremely useful to assess populations occurring in untrawlable habitat, 
such as with many species of Sebastes. Untrawlable habitat can be a problem for estimating indices 
of abundance from bottom trawl surveys (Jones et al., 2012, 2021; Thorson et al., 2013; 
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Zimmermann, 2003). Through cooperative research using fishing industry and community 
knowledge of fish distribution and behavior, fishery CPUE data has the potential to improve 
interpretation of survey-based indices of abundance (Johnson, 2011; Ressler et al., 2009). 

However, fishery CPUE can present some limits. Fishery CPUE data might confound changes in 
fishing behavior with trends in abundance and then are not proportional to the actual abundance. 
We did not explicitly account for fishing behavior in this study, but we made sure that preferential 
sampling of yellowfin fishery CPUE was low. We acknowledge that some bias might exist with 
the actual abundance due to difference in catchability. But the goal of this study is not to provide 
an unbiased index of abundance, rather to highlight how movement phenology, represented here 
as seasonal hotspots in wintering, spawning, and feeding areas might change depending on 
temperature. Accounting for scientific survey data within our approach could be complementary 
to CPUE fishery data and provide an additional data source to estimate unbiased fish spatial 
distribution and key demographic processes. Resource surveys for use in stock assessments are 
typically designed to occur at approximately the same time each year (NRC, 2000), and cover a 
large geographic area accounting for areas of few or null abundance. They also sample most of the 
life stages of the populations providing information for characterizing the age structure and 
population dynamics of the stocks. By using a standardized effort, they provide unbiased quantities 
on stocks. A spatio-temporal model fitted simultaneously to fishery and survey data could be used 
to create a joint abundance index. The joint abundance index could then be included in 
assessments; in the example of yellowfin sole, the joint index would be an alternative to include a 
structural linkage between summer bottom temperature and catchability. 

Some previous studies have combined survey and fishery CPUE, accounted for seasonality, and 
improved the estimation of the spatial distribution and abundance index of marine species 
(Bourdaud et al., 2017; Pinto et al., 2019; Thorson, 2019b). More recently, integrated population 
models have been developed to account for seasons explicitly (Thorson et al., 2020) and have 
combined both fishery and survey data to account for preferential sampling in fishery CPUE data 
(Rufener et al., 2021). Future work should focus on integrating all those data (seasonal, fishery 
and survey CPUE, and environmental variables) within spatio-temporal models on a sub-seasonal 
interval to capture seasonal movement. Such models will estimate the spatial distribution of each 
species in relation to temperatures year-round, and will form the basis for a spatio-temporal 
modeling approach to standardize the survey biomass data for each assessment. Those models 
might also inform forecasts of future stock distribution and habitat usage under various future 
climate and fishing pathways. In addition, the spatio-temporal modeling approach developed for 
this project could be applied to other economically important species to inform future prediction 
of habitat usage and distribution. In terms of management implications, this could have major 
impacts on fishing operations and could improve our ability to estimate accurate reference points 
in assessments. 

Conclusion 

Our study incorporates the effects of species distribution shifts into climate-ready ecosystem-based 
fisheries management. Fishery management under global change is challenging because if 
environmental variability ignored this could lead to overharvesting or missed harvesting 
opportunities, changes in stock productivity, changes in life history and reductions of spawning 
success. Our study provides a framework that could be used in climate monitoring and impact 
analysis on fisheries. Species distribution models with spatially varying coefficients linking 
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density and environmental covariates have to be promoted to represent the response of fish to 
environmental changes with a spatial structure (Bartolino et al., 2012, 2011; Porter and Ciannelli, 
2018; Thorson, 2019c). Future research should be done to apply our framework to other highly 
mobile species like flathead sole (Hippoglossoides elassodon), crab species in the EBS, Atlantic 
bluefin tuna (Thunnus thynnus), Mediterranean albacore (T. alalunga), and bullet tuna (Auxis 
rochei.) (Reglero et al., 2012; Zacher et al., 2018) to infer changes in movement phenology and 
account for changes in availability within stock assessment to provide management approaches 
that reduce climate-induced variability. 
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908 Table  1: Summary of the hypotheses tested, the associated model configurations and AIC values attributed to each model.  ∆AIC  is the difference in AIC score between the best model and the model being  
compared  909 

Models 

Spatiotemporal 

variations in CPUE 

are explained by 

Ecological hypothesis Equations 
∆AIC 

M0 

Year effect, Spatial 

main effect, and year 

spatial effect 

Does not account for 

seasonality and 

interannual temperature 

changes 

𝑙𝑙𝑙𝑙𝑙𝑙 [𝑏𝑏(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 )] = 𝛽𝛽(𝑡𝑡𝑖𝑖 ) + 𝜔𝜔(𝑠𝑠𝑖𝑖 ) + 𝜀𝜀(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ) 658 

M1 
M0 + spatial effect of 

seasons u, on CPUE 

Account for seasonality, 

(i.e changes in 

movement phenology) 

but not interannual 

temperature changes 

𝑙𝑙𝑙𝑙𝑙𝑙 [𝑏𝑏(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 )] = 𝛽𝛽(𝑡𝑡𝑖𝑖 ) + ��(𝜆𝜆(𝑘𝑘𝑢𝑢 ) + 𝜑𝜑(𝑠𝑠𝑖𝑖 , 𝑘𝑘𝑢𝑢 ))𝑞𝑞(𝑖𝑖, 𝑘𝑘𝑢𝑢 )� + 𝜔𝜔(𝑠𝑠𝑖𝑖 ) + 𝜀𝜀(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ) 

With u =c(Early, Intermediate, Late) 

654 

M2 

M0 + spatial effect of 

interannual 

temperature changes 

v 

Account for impact of 

interannual temperature 

changes, but not for 

seasonality 

𝑙𝑙𝑙𝑙𝑙𝑙 [𝑏𝑏(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 )] = 𝛽𝛽(𝑡𝑡𝑖𝑖 ) + � �(𝜆𝜆�𝑘𝑘𝑣𝑣(𝑡𝑡)� + 𝜑𝜑�𝑠𝑠𝑖𝑖 , 𝑘𝑘𝑣𝑣(𝑡𝑡)�)𝑞𝑞�𝑖𝑖, 𝑘𝑘𝑣𝑣(𝑡𝑡)�� + 𝜔𝜔(𝑠𝑠𝑖𝑖 ) + 𝜀𝜀(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ) 

With v = c(Cold, Warm) 
170 

M3 

M0 + spatial effect of 

the interaction of 

seasons u and 

interannual 

temperature changes 

v 

Account for changes in 

movement phenology in 

response to interannual 

temperature changes 

𝑙𝑙𝑙𝑙𝑙𝑙 [𝑏𝑏(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 )] = 𝛽𝛽(𝑡𝑡𝑖𝑖 ) + � �(𝜆𝜆�𝑘𝑘𝑢𝑢,𝑣𝑣(𝑡𝑡)� + 𝜑𝜑�𝑠𝑠𝑖𝑖 , 𝑘𝑘𝑢𝑢,𝑣𝑣(𝑡𝑡) �)𝑞𝑞�𝑖𝑖, 𝑘𝑘𝑢𝑢,𝑣𝑣(𝑡𝑡)�� + 𝜔𝜔(𝑠𝑠𝑖𝑖 ) + 𝜀𝜀(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ) 

With v = c(Cold, Warm) and u =c(Early, Intermediate, Late) 

0 

910 

911 

912 
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Figure 1: Distribution of wintering, spawning, and feeding areas for yellowfin sole in the Bering Sea, and 
observed regional grouping. Migration routes from wintering to feeding take place in spring, and the dates that 
Yellowfin Sole return to their wintering areas are unknown. Outer, middle, and inner shelf are defined for 
bathymetry between 200-100 meters, 100-50 meters and <50 meters respectively. (Adapted from Wakabayashi 
(1989) and Spies et al. (2019)) 
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Figure 2: Conceptual expectation about how temperature changes (warm or cold years) and seasons (Early, 
Intermediate, Late) may affect the spatial distribution of biomass. Survey area (brown lines) is represented when 
survey occurs during the intermediate season. Brown arrows represent the hypothesized ontogenetic migrations 
(the thickness represents the intensity of the migration in term of biomass). 
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Figure 3: Seasonal spatiotemporal distribution of CPUE. Seasons are defined as Early, Intermediate (Int.) and Late) 
(Years 2006, 2009, 2012, 2017 (cold years) are chosen as example because seasonality changes are more pronounced 
for cold years). Full panels are in Suppl. Mat. Fig. S12. 
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Figure 4: Spatial variation covariate effects 𝜑𝜑 on fisheries CPUE. Covariates represent the combined effect of 
season and temperature (ColdEarly, ColdIntermediate, ColdLate, WarmEarly, WarmIntermediate, WarmLate). 
Black crosses represent the spatial distribution of the data for each combination of season and temperature when 
aggregating across years. The model uses a log-link such that a location with value 0.1 is expected to have a 
exp(0.1) ≈10% higher expected CPUE than a location with value 0. 
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Figure 5: Seasonal spatial biomass distribution of yellowfin sole averaged for warm years (red) and cold years 
(blue). Red and blue polygons represent the cumulative biomass including 95% of the total biomass (𝑏𝑏(𝑠𝑠, 𝑢𝑢, 𝑣𝑣∗) 
Eq. 5) across the entire spatial area for warm and cold years respectively and for each season. Brown polygon 
represents the survey area. 
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Figure 6: Time series of the overlap between spatial distribution of fishery CPUE biomass and survey spatial 
footprint during the different seasons (columns) Thick lines represent the averaged overlap across years (thickness 
of the line represents the standard deviation). 
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Figure 7: Mean seasonal spatial biomass distribution of yellowfin sole for cold years (1st row) and warm years 
(second row) for females and males.  Green and orange polygons represent the cumulative biomass including the 
95% of the total biomass across the entire spatial area for females and males respectively and for each season. 
Brown polygon represents the survey area. 
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Figure 8: Time series between spatial distribution of fishery CPUE biomass and survey spatial footprint for females 
(orange) and males (green) during the different seasons (columns) and in cold and warm years (rows). Thick lines 
represent the average overlap across years (thickness of the line represent the standard deviation). 
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Figure 9: Posterior densities of coefficients as estimated from the stock assessment model (Spies et al. 2021) for model 
SAM.1 (panel a), and for the new overlap index, SAM.2, “beta_overlap” (panel b). These coefficients affect survey 
catchability (availability) applied to zero-centered anomalies. 
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Figure S1:  Spatial resolution of the study. Extrapolation grid and spatial distribution of the knots.  



 

Figure S2:  Spatial resolution of data. Grid represents the ADFG cells. Brown polygon is the  survey  area.  And orange dots are the location of  
fisheries CPUE (2001-2019)  

  



 

  



 

  

Figure S3:  Spatiotemporal distributions of observed CPUE fisheries data  

  



 

Figure S4:  Diagnosis of  any potential strong  preferential sampling. a)  Log-log plot between observed effort (sampling intensity) and observed catches.  b) and c) aim at investigating any potential  
strong preferential  sampling using predicted quantities by the model. b) For each season (here only intermediate  season is represented), we divided  the  study area into a reduced number of  24  
polygons  (each polygon is associated  with  a specific color). Then for each season and year,  we  calculated  the number of samples  (represented  by crosses) within each polygon and also  we  
calculated  the average predicted  biomass  within each polygon (low  biomass  are transparent and high biomass  are plain colors). c) Log-log plot between number of samples and average biomass  in 
each polygon for each season.  A  slope of 0.145 suggests a low sampling preference (based on Alglave et al. (2022)  



 

 

Figure S5: Comparison of index of  biomass  between models calculating CPUE as the  ratio of the total catch in kg and the  total effort within a ADFG  
cell (Model = sum) and  as the ratio of catches in kg and  effort averaged across ADFG (Model = averaged).  

  



 

  

Figure S6: Comparison of overlap index  of biomass  between models calculating CPUE as the  ratio of the total catch in kg and the total effort within  
a ADFG cell (Model =  sum) and as the ratio of catches in kg and  effort averaged across ADFG (Model = averaged).  



 

         
      

  
  
   

   
    

  

Figure S7: a) Standardized time series of cold pool extent (2001-2019). b) Spatial distribution of the cold pool (adapted from akgfmaps package 
(https://github.com/afsc-gap-products). According to Nichol et al., (2019) warm years are 2002,2003,2004,2005,2014,2015,2016 and cold years are 
2006,2007,2008,2009,2010,2012,2013,2017. Years 2001, 2011 and 2017 are not particularly warm or cold (2018 and 2019 were not included in 
Nichol’s study but can be defined as warm years). Because we did not want to define a supplementary level “Temperate” for the covariate 
environmental conditions (not enough data to have a balanced sampling with 3 levels for the covariate environmental conditions), we decided to 
define 2001 as a warm year and 2011 and 2017 as cold years. Indeed, yellowfin sole being a bottom fish, we considered that 2001 warmer than 
2011 and 2017 because based on panel b) the extend of cold water (<1 C) is smaller for 2001 than for 2011 and 2017. 

https://github.com/afsc-gap-products


 



 

 

Figure S8: Spatiotemporal distribution of proportion of male and female CPUE (green=Female, orange=Male). Red cross represents locations were  
not data were available. We attributed to these locations the value of the closet neighbor for a given year and a  given combination of covariates 
(i.e all combinations of levels constituting  seasons  and environmental covariates)  



 

 

 

 

 

 

 

Figure S9:  Comparison of averaged  overlap among seasons and  environmental conditions.  Overlap was calculated from  
the predicted biomass (Model=biomass) or from  the  expected spatial main  effect (model= Omega)  

 



 

Figure S10  : Model diagnostics output showing the Q-Q plot residuals and how residuals vary with magnitude of the predications.  

  



 

Figure S11  : Models diagnostics outputs showing  spatial map of quantile residuals  



 

  



 

Figure S12:  Seasonal  spatiotemporal distribution of CPUE. Seasons are defined as Early, Intermediate (Int.) and late  seasons).  

  



 

 

 

Figure  S13:  Significant effects of spatial variation covariate effects  𝜑𝜑  on fisheries CPUE  

  



 

Figure  S14: Time  series of index of biomass for female and male  yellowfin soles  

  



  

       
        

 

       
           

        
       

     
    

   
    

 
      
   

   
 

    
  

   
 

 

 

  
  

 

 

S15: Comparing results using fishery dependent data to results from independent data 

To justify that the ecological processes we are studying in this paper can be only inferred with fishery-dependent data 
and no fishery independent data, we also ran our analysis with fishery independent data as a sensitivity analysis. 

Method 

To this goal, we extended our approach by applying our model (Eq1.) to survey data for years 2001 to 2019. In particular, 
we represented the relationship among observed biomass (ratio of biomass and area swept) at time 𝑡𝑡𝑖𝑖 at location 𝑠𝑠𝑖𝑖 and 
the predicted positive local biomass (ratio of biomass and area swept) and the encounter probability using the widely 
used “Poisson-link” delta model (Thorson, 2018; Thorson & Barnett, 2017). We accounted for temperature effect only 
on the encounter probability because the goal of this study is to investigate how temperature affects movement 
phenology, i.e the presence of fish in a given area at a specific moment. 

To sum up, in this new model: 
• There is only one season (Intermediate Season, because no fishery independent data are available for 

the early and late seasons) 
• We accounted for the effect of temperature (cold year vs warm years on survey CPUE) on biomass 
• We used the same extrapolation grid (Fig.S1) that the one we used for the model with fishery 

dependent data. Using this extrapolation grid (that includes the fishery independent footprint and the 
area not available to the survey) we are able to show if the model with fishery independent data is able 
to infer the processes occurring outside the survey area. 

• We finally re-generated Fig.5, Fig.6, and Fig.S13 to figure out if we can answer the questions addressed 
in this study. 

Results 

Figure S15.1: Spatial biomass distribution of yellowfin sole averaged for warm years (red) and cold years (blue). Red and blue polygons represent 
the cumulative biomass including 95% of the total biomass across the entire spatial area for warm and cold years respectively and for the 
Intermediate season (survey season). Brown polygon represents the survey area. 



 

     
  

 

 

Figure S15.2 Time series of the overlap between spatial distribution of fishery CPUE biomass and survey spatial footprint during the intermediate 
season (survey season). Thick lines represent the averaged overlap across years (thickness of the line represent the standard deviation) 



 

    
       

    

      
      

    
 

     
  

 
   
    

 

Figure S165.3:  Significant effects of spatial variation covariate effects  𝜑𝜑  on survey data.  Grey dots represent a non-significant effect.  

First because survey data are only available during the intermediate season and are not defined across the all study area 
it is very difficult to infer changes in movement phenology based on those data. Then, this present sensitivity analysis 
justifies that the ecological processes we are investigating in this study can be only inferred with fishery-dependent data 
and no fishery independent data, and this because of three main reasons: 

1. When using survey data, there is small differences in distributions of survey data between cold and warm years. 
In warm years the distributions of survey data are more spread out over the middle shelf (Fig S15.1). However, 
the model cannot predict any differences on the inner shelf (Fig S15.1), unlike the model using fishery data (Fig. 
5). 

2. Additionally, the model using survey data cannot infer any significative effect between temperature changes and 
survey biomass (Figure S15.3). 

3. Predicting the survey biomass outside the survey area using VAST (i.e, autocorrelated function) did not provide 
any insight about the presence of fish outside the survey area (Fig. S15.2) because of the higher predictive 
uncertainty when predicting density in areas with zero observed data (Fig. S15.2). 
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